Prove that:
(i) sin 60° cos 30° + cos 60° . sin 30° = 1
(ii) cos 30° . cos 60° -sin 30° . sin 60° = 0
(iii) cosec2 45° -cot2 45° = 1
(iv) cos2 30° -sin2 30° = cos 60° .
(v)
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios:
(i) sin 45°
(ii) cos 45°
(iii) tan 45°
(i) If sin x = cos x and x is acute, state the value of x.
(ii) If sec A = cosec A and 0° A 90° , state the value of A.
(iii) If tanθ = cotθ and 0° <= θ <= 90° , state the value of θ.
(iv) If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
(i) If sin x = cos y, then x + y = 45° ; write true of false.
(ii) secθ . Cotθ = cosecθ ; write true or false.
(iii) For any angle, state the value of : Sin2θ + cos2θ .
Given A = 60° and B = 30° , prove that:
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B – sin A sin B
(iii) cos (A – B) = cos A cos B + sin A sin B
(iv) tan (A – B) =
If A =30° , then prove that:
(i) sin 2A = 2sin A cos A = ?????/ ?+?????
(ii) cos 2A = cos2A – sin2A= ?−?????/ ?+?????
(iii) 2 cos2 A – 1 = 1 – 2 sin2A
(iv) sin 3A = 3 sin A – 4 sin3A
If A = B = 45° , show that:
(i) sin (A – B) = sin A cos B – cos A sin B
(ii) cos (A + B) = cos A cos B – sin A sin B
If A = 30° ; show that:
(i) sin 3 A = 4 sin A sin (60° -A) sin (60° + A)
(ii) (sin A – cos A)2 = 1 – sin 2A
(iii) cos 2A = cos4 A – sin4 A
(iv) ?−??? ??/ ??? ?? = ????
(v) ?+?????+?????/ ????+??? ? = ???? ?
(vi) 4 cos A cos (60° -A). cos (60° + A) = cos 3A
(vii) ???3?−???3?/ ????
If 4 sin2 ? – 1= 0 and angle ? is less than 90° , find the value of ? and hence the value of cos2 ? + tan2 ?.
(i) If sin x + cos y = 1 and x = 30° , find the value of y.
(ii) If 3 tan A – 5 cos B= √? and B = 90° , find the value of A.
From the given figure, find:
(i) cos x °
(ii) x °
(iii) ? ?????° − ? ?????°
(iv) Use tan xo , to find the value of y.
Use the given figure to find:
(i) tan ?°
(ii) ?°
(iii) sin2 ? °
-cos2 ?°
(iv) Use sin ? ° to find the value of x.
Solve for x:
(i) 2 cos 3x – 1 = 0
(ii) Cos ?/ ? − ? = 0
(iii) sin (x + 10o ) = ½
(iv) cos (2x – 30° ) = 0
(v) 2 cos (3x – 15° ) = 1
(vi) tan2 (x – 5 ° ) = 3
(vii) 3 tan2 (2x – 20° ) = 1
(viii) Cos ( ?/ ? +??) = √?/ ?
(ix) sin2 x + sin2 30° = 1
(x) cos2 30° + cos2 x = 1
(xi) cos2 30° + sin2 2x = 1