From the following figure, find the values of :
(i) sin A
(ii) cos A
(iii) cot A
(iv) sec C
(v) cosec C
(vi) tan C
Form the following figure, find the values of :
(i) cos B
(ii) tan C
(iii) sin2B + cos2B
(iv) sin B. cos C + cos B. sin C
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - π/ πΊπππC
(i) sin B
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
Given: sin A = 3/5 , find :
(i) tan A
(ii) sec A
(iii) cos2 A + sin2A
Given: cos A = 5 / 13
Evaluate:
Given: sec A = 29/21, evaluate : sin A β (1/tan A)
Given: tan A = 4/3, find:
Given: 4 cot A = 3 find;
(iii) cosec2 A - cot2A.
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In a right-angled triangle, it is given that A is an acute angle and tan A = 5/12. find the value of :
(ii) sin A
Given: sin π½ = p/q
Find cos π½ + sin π½ in terms of p and q.
If cos A = Β½ and sin B = 1/βπ, find the value of :
Are angles A and B from the same triangle? Explain.
If 5 cot π½= 12, find the value of Cosec π½ + sec π½
If tan x = π (π)/ (π) , find the value of : 4 sin2x - 3 cos2x + 2
If cosec π½ = βπ, find the value of:
(i) 2 - sin2π½ -cos2π½
(ii)
If sec A = βπ, find the value of :
If cot π½= 1; find the value of: 5 tan2π½+ 2 sin2 π½- 3
In the following figure:
AD BC, AC = 26 CD = 10, BC = 42,
β DAC = x and β B = y.
Concise Selina Solutions for Class 9 Maths Chapter 22-
Trigonometrical Ratios
Find the value of :
(i) cot x
From the following figure, find:
(i) y
(ii) sin xΒ°
(iii) (sec xΒ° -tan xΒ° ) (sec xΒ° +tan xΒ° )
Use the given figure to find:
(i) sin xΒ°
(ii) cos yΒ°
(iii) 3 tan xΒ° -2 sin yΒ° +4 cos yΒ° .
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find:
(i) cos β DBC
(ii) cot β DBA
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. find:
(i) tan DBC
(ii) sin DBA
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ABC.
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(iii) sin2 B + cos2B
(iv) tan C - cot B
In triangle β ABC; β ABC = 90Β° , CAB = xΒ° , tan xΒ° = ΒΎ and BC = 15 cm. Find the measures of AB and AC.
Using the measurements given in the following figure:
(i) Find the value of sinΦ and tanθ.
(ii) Write an expression for AD in terms of ΞΈ
In the given figure;
BC = 15 cm and sin B = 4/5
(i) Calculate the measure of AB and AC.
(ii) Now, if tan ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B β 1/ cos2B = -1
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Given: 4 sin π½ = 3 cosπ½; find the value of:
(i) sin π½
(ii) cos π½
(iii) cot2 π½ - cosec2 π½.
(iv) 4 cos2 π½ - 3 sin2 π½ + 2
Given : 17 cos π½ = 15;
Find the value of tan π½ + 2sec π½.
Given : 5 cos A - 12 sin A = 0; evaluate :
In the given figure; C = 90o and D is the mid-point of AC. Find
If 3 cos A = 4 sin A, find the value of :
(ii) 3 - cot2 A + cosec2A
In triangle ABC, B = 90Β° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(ii) sin C
(iii) tan2 B - sec2 B + 2
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1. Find the length of AB, AD, AC, and DC.
Given q tan A = p, find the value of :
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the the perimeter of the rectangle ABCD.
If sin A = β 3/2 and cos B =β 3/2, find the value of :
Use the information given in the following figure to evaluate:
10/sin x + 6/sin y - 6cot y
If sec A = βπ,
find:
If 5 cos π½ = 3,
cosec π½ - cot π½ / cosec π½ + cot π½
If cosec A + sin A = 5(π)/ (π) , find the value of cosec2A + sin2A
If 5 cos π½ = 6 sin π½ ; evaluate:
(i) tan π½
(ii) 12 sin π½ - 3 cos π½/ 12 sin π½ + 3 cos π½
Lido
Courses
Quick Links
Terms & Policies