From the following figure, find the values of :
(i) sin A
(ii) cos A
(iii) cot A
(iv) sec C
(v) cosec C
(vi) tan C
Form the following figure, find the values of :
(i) cos B
(ii) tan C
(iii) sin2B + cos2B
(iv) sin B. cos C + cos B. sin C
(i) cos A
(ii) cosec A
(iii) tan2A – sec2A
(iv) sin C
(v) sec C
(vi) cot2 C – ?/ ????C
(i) sin B
(iii) sec2 B – tan2B
(iv) sin2C + cos2C
Given: sin A = 3/5 , find :
(i) tan A
(ii) sec A
(iii) cos2 A + sin2A
Given: cos A = 5 / 13
Evaluate:
Given: sec A = 29/21, evaluate : sin A – (1/tan A)
Given: tan A = 4/3, find:
Given: 4 cot A = 3 find;
(iii) cosec2 A – cot2A.
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
In a right-angled triangle, it is given that A is an acute angle and tan A = 5/12. find the value of :
(ii) sin A
Given: sin ? = p/q
Find cos ? + sin ? in terms of p and q.
If cos A = ½ and sin B = 1/√?, find the value of :
Are angles A and B from the same triangle? Explain.
If 5 cot ?= 12, find the value of Cosec ? + sec ?
If tan x = ? (?)/ (?) , find the value of : 4 sin2x – 3 cos2x + 2
If cosec ? = √?, find the value of:
(i) 2 – sin2? -cos2?
(ii)
If sec A = √?, find the value of :
If cot ?= 1; find the value of: 5 tan2?+ 2 sin2 ?- 3
In the following figure:
AD BC, AC = 26 CD = 10, BC = 42,
∠ DAC = x and ∠ B = y.
Concise Selina Solutions for Class 9 Maths Chapter 22-
Trigonometrical Ratios
Find the value of :
(i) cot x
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° -tan x° ) (sec x° +tan x° )
Use the given figure to find:
(i) sin x°
(ii) cos y°
(iii) 3 tan x° -2 sin y° +4 cos y° .
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC. Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm. find:
(i) tan DBC
(ii) sin DBA
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ABC.
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(iii) sin2 B + cos2B
(iv) tan C – cot B
In triangle ∠ ABC; ∠ ABC = 90° , CAB = x° , tan x° = ¾ and BC = 15 cm. Find the measures of AB and AC.
Using the measurements given in the following figure:
(i) Find the value of sinΦ and tanθ.
(ii) Write an expression for AD in terms of θ
In the given figure;
BC = 15 cm and sin B = 4/5
(i) Calculate the measure of AB and AC.
(ii) Now, if tan ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B – 1/ cos2B = -1
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Given: 4 sin ? = 3 cos?; find the value of:
(i) sin ?
(ii) cos ?
(iii) cot2 ? – cosec2 ?.
(iv) 4 cos2 ? – 3 sin2 ? + 2
Given : 17 cos ? = 15;
Find the value of tan ? + 2sec ?.
Given : 5 cos A – 12 sin A = 0; evaluate :
In the given figure; C = 90o and D is the mid-point of AC. Find
If 3 cos A = 4 sin A, find the value of :
(ii) 3 – cot2 A + cosec2A
In triangle ABC, B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
(ii) sin C
(iii) tan2 B – sec2 B + 2
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1. Find the length of AB, AD, AC, and DC.
Given q tan A = p, find the value of :
If sin A = cos A, find the value of 2 tan2A – 2 sec2 A + 5.
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the the perimeter of the rectangle ABCD.
If sin A = √ 3/2 and cos B =√ 3/2, find the value of :
Use the information given in the following figure to evaluate:
10/sin x + 6/sin y – 6cot y
If sec A = √?,
find:
If 5 cos ? = 3,
cosec ? – cot ? / cosec ? + cot ?
If cosec A + sin A = 5(?)/ (?) , find the value of cosec2A + sin2A
If 5 cos ? = 6 sin ? ; evaluate:
(i) tan ?
(ii) 12 sin ? – 3 cos ?/ 12 sin ? + 3 cos ?