In 2^n, n is known as:
(a) Base (b) Constant (c) exponent (d) Variable
For a fixed base, if the exponent decreases by 1, the number becomes:
(a) One-tenth of the previous number.
(b) Ten times of the previous number.
(c) Hundredth of the previous number.
(d) a Hundred times of the previous number.
3^{-2} \text {can be written as: }
(a) 3^{2} (b) 1 / 3^{2} (c) 1 / 3^{-2}(d)-2 / 3
\text { The value of } 1 /(4)^{-2} \text {is: }
(a) 16 (b) 8 (c) 1/16 (d) 1/8
\text { The value of } 3^{5} \div 3^{-6} \text {is: }
\text { (a) } 3^{5} \text { (b) } 3^{-6} \text {(c) } 3^{11} \text { (d) } 3^{-11}
\text { The value of }(2 / 5)^{-2} \text {is: }
(a) 4/5 (b) 4/25 (c) 25/4 (d) 5/2
\text { The reciprocal of }(2 / 5)^{-1} \text {is: }
(a) 2/5 (b) 5/2 (c) –5/2 (d) –2/5
\text { The multiplicative inverse of } 10^{-100} \text {is }
(a) 10 (b) 100 (c) 10^{100} (d) 10^{-100}
\text { The value of }(-2)^{2 \times 3-1} \text { is }
(a) 32 (b) 64 (c) – 32 (d) – 64
\text { The value of }(-2 / 3)^{4} \text { is equal to: }
(a) 16/81 (b) 81/16 (c) -16/81 (d) 81/ −16
\text { The multiplicative inverse of }(-5 / 9)^{-99} \text {is: }
(a)(-5 / 9)^{99}(b)(5 / 9)^{99}(c)(9 /-5)^{99}(d)(9 / 5)^{99}
If x be any non-zero integer and m, n be negative integers, then \mathbf{x}^{\mathbf{m}}\times\mathbf{x}^{\mathbf{n}} is equal to: \text { (a) } x^{m}(b) x^{m+n}(c) x^{n}(d) x^{m-n}
\text { If y be any non-zero integer, then } y^{0} \text { is equal to: }
(a) 1 (b) 0 (c) – 1 (d) Not defined
If x be any non-zero integer, then x^-1 is equal to
(a) x (b) 1/x (c) – x (c) -1/x
If x be any integer different from zero and m be any positive integer, then x^-m is equal to:
(a) x^{m}(b)-x^{m} (c) 1 / x^{m}(d)-1 / x^{m}
If x be any integer different from zero and m, n be any integers, then \left(\mathbf{x}^{\mathrm{m}}\right)^{\mathbf{n}} is equal to: \left(\right.\text { a) } x^{m+n}(b) x^{m n}(c) x^{m / n}(d) x^{m-n}
\text { Which of the following is equal to }(-3 / 4)^{-3} ?
(a) (3 / 4)^{-3}(b)-(3 / 4)^{-3} (c) (4 / 3)^{3} (d) (-4 / 3)^{3}
(-5 / 7)^{-5} \text {is equal to: }
(a)(5 / 7)^{-5}(b)(5 / 7)^{5} (\mathbf{d})(-7 / 5)^{5} (c)(7 / 5)^{5}
(-7 / 5)^{-1} \text {is equal to: }
(a) 5/7 (b) – 5/7 (c) 7/5 (d) -7/5
(-9)^{3} \div(-9)^{8} \text { is equal to: }
(a) (9)^{5}(b)(9)^{-5}(c)(-9)^{5} (d) (-9)^{-5}
\text { For a non-zero integer } x, x^{7} \div x^{12} \text { is equal to: }
\text { (a) } x^{5}(b) x^{19}(c) x^{-5}(d) x^{-19}
\text { For a non-zero integer } x,\left(x^{4}\right)^{-3} \text {is equal to: }
\text { (a) } x^{12}(b) x^{-12}(c) x^{64}(d) x^{-64}
\text { The value of }\left(7^{-1}-8^{-1}\right)^{-1}-\left(3^{-1}-4^{-1}\right)^{-1} \text {is: }
(a) 44 (b) 56 (c) 68 (d) 12
The standard form for 0.000064 is
(a) 64 \times 10^{4}\left(\right. b) 64 \times 10^{-4} (c) 6.4 \times 10^{5} (d) 6.4 \times 10^{-5}
The standard form for 234000000 is
(a) 2.34 \times 10^{8} (b) 0.234 \times 10^{9} (c) 2.34 \times 10^{-8} (d) 0.234 \times 10^{-9}
\text { The usual form for } 2.03 \times 10^{-5}
(a) 0.203 (b) 0.00203 (c) 203000 (d) 0.0000203
(1 / 10)^{0} \text { is equal to }
(a) 0 (b) 1/10 (c) 1 (d) 10
(3 / 4)^{5} \div(5 / 3)^{5} \text { is equal to }
(a) (3 / 4 \div 5 / 3)^{5} (b) (3 / 4 \div 5 / 3)^{1} (c) (3 / 4 \div 5 / 3)^{0} (d) (3 / 4 \div 5 / 3)^{10}
For any two non-zero rational numbers x and y, x^{4} \div y^{4} is equal to
(a) (x \div y)^{0} (b) (x \div y)^{1} (c) (x \div y)^{4} (\mathbf{d})(\mathbf{x} \div \mathbf{y})^{8}
\text { For a non-zero rational number } p, p^{13} \div p^{8} \text { is equal to }
\text { (a) } \mathbf{p}^{5} \text { (b) } \mathbf{p}^{21} \text { (c) } \mathbf{p}^{-5} \text {(d) } \mathbf{p}^{-19}
\text { For a non-zero rational number } z,\left(z^{2}\right)^{3} \text { equal to }
\text { (a) } z^{6}(b) z^{-6}(c) z^{1}(d) z^{4}
Cube of -1/2 is
(a) 1/8 (b) 1/16 (c) -1/8 (d) -1/16
\text { Which of the following is not the reciprocal of }(2 / 3)^{4} ?
\text { (a) }(3 / 2)^{4}(b)(3 / 2)^{-4}(c)(2 / 3)^{-4}(d) 3^{4} / 2^{4}
\text { The multiplicative inverse of } 10^{10} \text { is } _____
\mathbf{a}^{3} \times \mathbf{a}^{-10}=\mathbf{a}^{3+(-10)}=\mathbf{a}^{3-10}= _____
5^{0} = ___
5^{5} \times 5^{-5}=5^{5+(-5)}=5^{5-5}=5^{0}= ____
\text { The value of }\left(1 / 2^{3}\right)^{2} \text { equal to } ____
\text { The expression for } 8^{-2} \text {as a power with the base } 2 \text { is } ________
Very small numbers can be expressed in standard form by using ________ exponents.
Very large numbers can be expressed in standard form by using _______ exponents.
\text { By multiplying }(10)^{5} \text { by }(10)^{-10} \text {we get } _____
\left[(2 / 13)^{-6} \div(2 / 13)^{3}\right]^{3} \times(2 / 13)^{-9}= ______
\text { Find the value }\left[4^{-1}+3^{-1}+6^{-2}\right]^{-1}
\left[2^{-1}+3^{-1}+4^{-1}\right]^{0}= _____
The standard form of (1/100000000) is ______
The standard form of 12340000 is _______
\text { The usual form of } 3.41 \times 10^{6} \text { is } _______
\text { The usual form of } 2.39461 \times 10^{6} \text { is } _______
\text { If } 36=6 \times 6=6^{2}, \text { then } 1 / 36 \text { expressed as a power with the base } 6 \text { is } _______