Prove that:
(i) \sin \theta \cos \left(90^{\circ}-\theta\right)+\sin \left(90^{\circ}-\theta\right) \cos \theta=1
(ii) \frac{\sin \theta}{\cos (90-\theta)}+\frac{\cos \theta}{\sin (90-\theta)}=2
(iii)
\frac{\sin \theta \cos \left(90^{\circ}-\theta\right) \cos \theta}{\sin \left(90^{\circ}-\theta\right)}+\frac{\cos \theta \sin \left(90^{\circ}-\theta\right) \sin \theta}{\cos \left(90^{\circ}-\theta\right)}=1
\text { (iv) } \frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)}+\frac{\tan \left(90^{\circ}-\theta\right)}{\cot \theta}=2
\text { (v) } \frac{\cos \left(90^{\circ}-\theta\right)}{1+\sin \left(90^{\circ}-\theta\right)}+\frac{1+\sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=2 \operatorname{cosec} \theta
\text { (vi) } \frac{\sec \left(90^{\circ}-\theta\right) \operatorname{cosec} \theta-\tan \left(90^{\circ}-\theta\right) \cot \theta+\cos ^{2} 25^{\circ}+\cos ^{2} 65^{\circ}}{3 \tan 27^{\circ} \tan 63^{\circ}}=\frac{2}{3}
\begin{aligned}
&\text { (vii) }\\
&\cot \theta \tan \left(90^{\circ}-\theta\right)-\sec \left(90^{\circ}-\theta\right) \operatorname{cosec} \theta+\sqrt{3} \tan 12^{\circ} \tan 60^{\circ} \tan 78^{\circ}=2
\end{aligned}