Given sec θ = 13/12 Find tan θ.
Given sec θ = 13/12 Find cot θ.
In triangle ABC, right-angled at B, if tan A = \frac{1}{\sqrt{3}} find the value of cos A cos C + sin A sin C.
Given 15 cot A = 8, find sin A and sec A.
Given sec θ = 13/12 Find cos θ.
State whether the following statment is true or false.
cot A is the product of cot and A
In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P.
sin θ = 4/3 for some angle θ.
cos A is the abbreviation used for the cosecant of angle A.
In triangle ABC, right-angled at B, if tan A = \frac{1}{\sqrt{3}} find the value of sin A cos C + cos A sin C.
If \sin\theta=\frac{4}{5}, then find the value of \frac{4\sinθ-\cos\theta+1}{4\sinθ+\cos\theta-1}
If \tan\theta=\frac{a}{b}, then find the value of \frac{\cos\theta+\sin\theta}{\cos\theta-\sin\theta}
In ∆ PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of cos P.
The value of tan A is always less than 1.
secA=\frac{12}{5} for some value of angle A.
In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine sin C, cos C
In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm and AC = 25 cm. Determine the value of cos A
In Fig, find tan P – cot R
If sin A = 3/4, Calculate cos A and tan A.
Given sec θ = 13/12 Find sin θ.
Given sec θ = 13/12 Find cosec θ.
If ∠A and ∠B are acute angles such that cos A = cos B, check if ∠ A = ∠ B.
If cot θ = 7/8, evaluate cot2 θ.
If cot θ = 7/8, evaluate \frac{(1 + sin θ)(1 – sin θ)}{(1+cos θ)(1-cos θ)}
If 3 cot A = 4, check whether \frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A} or not.**
\frac{2\tan30^{\circ}}{1-\tan^230^{\circ}}=
Evaluate sin 60° cos 30° + sin 30° cos 60°.
\frac{2\tan30^{\circ}}{1+\tan^230^{\circ}}\ =
If tan (A + B) = √3 and tan (A – B) = 1/√3 ,0° < A + B ≤ 90°; A > B, find A and B.
Evaluate \frac{\sin30^{\circ}+\tan45^{\circ}-\operatorname{cosec}60^{\circ}}{\sec30^{\circ}+\cos60^{\circ}+\cot45^{\circ}}
\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=
The value of sin θ increases as θ increases.
The value of cos θ increases as θ increases.
If tan A = cot B, check if A + B = 90°.
State whether true or false:
tan 48° tan 23° tan 42° tan 67° = 1
If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Evaluate cosec 31° – sec 59°.
If A, B and C are interior angles of a triangle ABC, state whether \sin (\frac{B+C}{2}) = \cos \frac{A}{2}
9 sec2A – 9 tan2A =
Evaluate: 2\sec^260°+\cot^230°-\operatorname{cosec}^230°
If \tan\alpha=\sqrt{3} and \tan\beta=\frac{1}{\sqrt{3}} 0° < ⍺, β < 90°, find the value of \cot\left(\alpha+\beta\right).
Find the value of (1 + cot A – cosec A) (1 + tan A + sec A).
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A.
Evaluate 2 tan2 45° + cos2 30° – sin2 60.
Evaluate \frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}
Evaluate \frac{5\cos^260^{\circ}+4\sec^230^{\circ}-\tan^245^{\circ}}{\sin^230^{\circ}+\cos^230^{\circ}}
sin 2A = 2 sin A is true when A =
sin (A + B) = sin A + sin B.
sin θ = cos θ for all values of θ.
cot A is not defined for A = 0°.
Evaluate \frac{\sin 18°}{\cos 72°}
Evaluate \frac{\tan 26°}{\cot 64°}
Evaluate cos 48° – sin 42°.
cos 38° cos 52° – sin 38° sin 52° = 0
(sec A + tan A) (1 – sin A) =
Find the value of \frac{1+\tan^2A}{1+\cot^2A}.
How sin 67° + cos 75° is expressed in terms of trigonometric ratios of angles between 0° and 45°?
State whether L.H.S and R.H.S are equal:
(\cosec θ – \cot θ)^2= \frac{(1-\cos θ)}{(1+\cos θ)}
\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec}A+\cot A
Express (sin A + cosec A)2 + (cos A + sec A)2 in terms of
\tan^2A and \cot^2A.
\sqrt{\frac{1+\sin\mathrm{A}}{1-\sin\mathrm{A}}}=\sec\mathrm{A}+\tan\mathrm{A}
Express the trigonometric ratio of tan A in terms of cot A.
Write the trigonometric ratios of sin A in terms of sec A.
Evaluate \frac{\sin^263+\sin^227^{\circ}}{\cos^217^{\circ}+\cos^273^{\circ}}
Evaluate sin 25° cos 65° + cos 25° sin 65°
Write the trigonometric ratios of cos A in terms of sec A.
Write the trigonometric ratios of tan A in terms of sec A.
Write the trigonometric ratios of cosec A in terms of sec A.
Write the other trigonometric ratios of cot A in terms of sec A.
Find the value of \frac{\sin\theta-2\sin^3\theta}{2\cos^3\theta-\cos\theta}.
\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta
\frac{1+\sec\mathrm{A}}{\sec\mathrm{A}}=\frac{\sin^2\mathrm{~A}}{1-\cos\mathrm{A}}
(\operatorname{cosec}A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}\ \ \ \ \ \ \ ...[1]
Express the trigonometric ratio of sin A in terms of cot A.
\left(\frac{1+\tan^2A}{1+\cot^2A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^2
\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A
Express the trigonometric ratio of sec A in terms of cot A.
Lido
Courses
Quick Links
Terms & Policies