The weight of coffee in 70 packets are shown in the following table :
Weight (in g) | Number of packets |
---|---|
200-201 | 12 |
201-202 | 26 |
202-203 | 20 |
203-204 | 9 |
204-205 | 2 |
205-206 | 1 |
Determine the modal weight.
In the given data, the highest frequency is 26, which lies in the interval 201 – 202
Here, l = 201,fm = 26,f1 = 12,f2 = 20 and (class width) h = 1
\therefore \text { Mode }=1+\left(\frac{f_{m}-f_{1}}{2 f_{m}-f_{1}-f_{2}}\right) \times h \\ \left.=201+\frac{26-12}{(2 \times 26-12-20}\right) \times 1 \\ =201+\frac{14}{(52-32)} \\ =201+14 / 20 \\ =201+0.7 \\ =201.7 \mathrm{~g}
Hence, the modal weight = 201.7 g.
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies