A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped bottles each of radius 1.5 cm and height 4 cm. How many bottles are needed to empty the bowl?
n cylindrical bottle | Hemisphere |
---|---|
r = 1.5 cm | R = 9 cm |
R = 9 cm |
As the volume of liquid does not change
So, Volume of n bottles = Volume of hemisphere
\Rightarrow \mathrm{n} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{2}{3} \pi \mathrm{R}^{3} \\ \Rightarrow \mathrm{nr}^{2} \mathrm{~h}=\frac{2}{3} \mathrm{R}^{3} \\ \Rightarrow \mathrm{n} \times 1.5 \times 1.5 \times 4=\frac{2}{3} \times 9 \times 9 \times 9 \\ \Rightarrow \mathrm{n}=\frac{2 \times 9 \times 9 \times 9 \times 100}{3 \times 15 \times 15 \times 4}=54
Hence, 54 bottles are needed.
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies