 # NCERT Exemplar Solutions Class 10 Mathematics Solutions for Surface Areas and Volumes - Exercise 12.3 in Chapter 12 - Surface Areas and Volumes

A bucket is in the form of a frustum of a cone and holds 28.490 litres of water. The radii of the top and bottom are 28 cm and 21 cm, respectively. Find the height of the bucket.

According to the question,

The bucket is in the form of frustum of a cone.

We know that,

Volume of frustum of a cone = 1/3 πh(r12 + r22 + r1r2), where, h = height, r1 and r2 are the radii(r1 > r2)

For bucket,

Volume of bucket = 28.490 L

1 L = 1000 cm3

Volume of bucket = 28490 cm3

Radius of top, r1 = 28 cm

Radius of bottom, r2 = 21 cm

Let the height = h.

Substituting these values in the equation to find the volume of bucket,

We have.

Volume of bucket = 1/3 πh(282 + 212 + 28(21))

28490 = 1/3 × 22/7 × h (784 + 441 + 588) = 22/7 × h × 1813

⇒ h = (28490 × 21) / (22 × 1813)

⇒ h = 15 cm

Related Questions

Lido

Courses

Teachers

Book a Demo with us

Syllabus

Maths
CBSE
Maths
ICSE
Science
CBSE

Science
ICSE
English
CBSE
English
ICSE
Coding

Terms & Policies

Selina Question Bank

Maths
Physics
Biology

Allied Question Bank

Chemistry
Connect with us on social media!