A mason construction a wall of dimensions 270 cm × 300 cm × 350 cm with the bricks each of size 22.5 cm × 11.25 cm × 8.75 cm and it is assumed that \frac{1}{8} space is covered by the mortar. Then the number of bricks used to construct the wall is
The volume of the wall covered by mortar = \frac{1}{8} part
So, the volume covered by bricks of wall
= \left(1-\frac{1}{8}\right) volume of wall
=\frac{7}{8} volume of wall
Bricks (Cuboid)
l1 = 22.5 cm
b1 = 11.25 cm
h1 = 8.75 cm
Wall (Cuboid)
l = 270 cm
b = 300 cm
h = 350 cm
Let n be the number of bricks.
According to the question, we have
Volume of n bricks = \frac{7}{8} Volume of wall (Cuboid)
\Rightarrow \mathrm{n} \times \mathrm{l}_{1} \times \mathrm{b}_{1} \times \mathrm{h}_{1}=\frac{7}{8} l \times b \times h \\ \Rightarrow n=\frac{7 \times l \times b \times h}{8 \times l_{1} \times b_{1} \times h_{1}}=\frac{7 \times 270 \times 300 \times 350}{8 \times 22.5 \times 11.25 \times 8.75} \\ \Rightarrow n=\frac{7 \times 270 \times 300 \times 350 \times 10 \times 100 \times 100}{8 \times 225 \times 1125 \times 875}
⇒ n = 2 × 4 × 350 × 4 = 32 × 350 = 11200 bricks
Hence, right option is 11200.
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies