chapter-header

ML Aggarwal Solutions Class 10 Mathematics Solutions for Trigonometric Identities Exercise 18 in Chapter 18 - Trigonometric Identities

Question 31 Trigonometric Identities Exercise 18

If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.

Answer:

Solution:

First we need to split the terms in LHS to make the numerical coefficient equal.

Given,

7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°

3 sin2 θ + 3 cos2 θ + 4 sin2 θ = 4

3 (sin2 θ + 3 cos2 θ) + 4 sin2 θ = 4

3 (1) + 4 sin2 θ = 4

4 sin2 θ = 4 – 3

sin2 θ = ¼

Taking square-root on both sides, we get

sin θ = ½

Thus, θ = 30o

Connect with us on social media!
2022 © Quality Tutorials Pvt Ltd All rights reserved