If 7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°, then find the value of θ.
Solution:
First we need to split the terms in LHS to make the numerical coefficient equal.
Given,
7 sin2 θ + 3 cos2 θ = 4, 0° ≤ θ ≤ 90°
3 sin2 θ + 3 cos2 θ + 4 sin2 θ = 4
3 (sin2 θ + 3 cos2 θ) + 4 sin2 θ = 4
3 (1) + 4 sin2 θ = 4
4 sin2 θ = 4 – 3
sin2 θ = ¼
Taking square-root on both sides, we get
sin θ = ½
Thus, θ = 30o
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies