Prove that following:
sin (90o – θ) cos (90o – θ) = tan θ/ (1 + tan2 θ)
Here we can apply the identity sin2 θ + cos2 θ =1
\begin{aligned} &\sin \left(90^{\circ}-\theta\right) \cos \left(90^{\circ}-\theta\right)=\frac{\tan \theta}{1+\tan ^{2} \theta}\\ &\text { R.H.S. }=\frac{\tan \theta}{1+\tan ^{2} \theta}=\frac{\frac{\sin \theta}{\cos \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}\\ &=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}\\ &=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}=\frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta=\sin \theta \cos \theta\\ &\therefore \text { L.H.S. }=\text { R.H.S. } \end{aligned}
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies