Jump to

- GST
- Banking
- Shares and Dividends
- Quadratic Equations in One Variable
- Factorization
- Ratio and Proportion
- Matrices
- Arithmetic and Geometric Progression
- Reflection
- Section Formula
- Equation of Straight Line
- Similarity
- Locus
- Circles
- Constructions
- Mensuration
- Trigonometric Identities
- Trigonometric Tables
- Heights and Distances

There is water to a height of 14 cm in a cylindrical glass jar of radius 8 cm. Inside the water there is a sphere of diameter 12 cm completely immersed. By what height will the water go down when the sphere is removed?

Answer:

**Solution:**

When the sphere is removed than the amount of water decreased will be equivalent to the volume of the sphere.

Given radius of the glass jar, R = 8 cm

Diameter of the sphere = 12 cm

Radius of the sphere, r = 12/2 = 6 cm

When the sphere is removed from the jar, volume of water decreases.

Let h be the height by which water level will decrease.

Volume of water decreased = Volume of the sphere

π R^{2}h = (4/3)π r^{3}

8^{2}h = (4/3)6^{3}

h = (4/3)×6×6×6/(8×8)

= 18/4 = 9/2 = 4.5 cm

**Hence the height by which water level decreased is 4.5 cm.**

Related Questions

Was This helpful?

Exercises

Chapters

Lido

Courses

Quick Links

Terms & Policies

Terms & Policies

2022 © Quality Tutorials Pvt Ltd All rights reserved