Using the following figure, show that BD=√𝒙.
Let AB=x
BC=1
AC=x+1
Here, AC is diameter and O is the center
OA= OC = OD = radius = \frac{x+1}{2}
And OB = OC – BC = \frac{x+1}{2} -1= \frac{x+1}{2}
Now, using Pythagoras theorem,
OD²= OB²+BD²
\begin{array}{l} \left(\frac{x+1}{2}\right)^{2}=\left(\frac{x-1}{2}\right)^{2}+B D^{2} \\ \Rightarrow B D^{2}=\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2} \\ \Rightarrow \frac{x^{2}+2 x+1-x^{2}+2 x-1}{4} \\ \Rightarrow \frac{4 x}{4}=x \\ \therefore, B D=\sqrt{x} \end{array}
Hence proved.
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies