chapter-header

Selina Solutions Class 9 Mathematics Solutions for Exercise 1(C) in Chapter 1 - Chapter 1- Rational and Irrational Numbers

Question 15 Exercise 1(C)

.If \frac{2+\sqrt{5}}{2-\sqrt{5}}=x \text { and } \frac{2-\sqrt{5}}{2+\sqrt{5}}=y find the value of x²-y².

Answer:

\begin{aligned} x=\frac{2+\sqrt{5}}{2-\sqrt{5}} &=& \frac{2-\sqrt{5}}{2+\sqrt{5}} \\ =& \frac{2+\sqrt{5}}{2-\sqrt{5}} \times \frac{2+\sqrt{5}}{2+\sqrt{5}} &=\frac{2-\sqrt{5}}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}} \\ =& \frac{(2+\sqrt{5})^{2}}{2^{2}-(\sqrt{5})^{2}} &=\frac{(2-\sqrt{5})^{2}}{2^{2}-(\sqrt{5})^{2}} \\ -\frac{4+4 \sqrt{5}+5}{4-5} &-\frac{4-4 \sqrt{5}+5}{4-5} \\ =\frac{9+4 \sqrt{5}}{-1} &=\frac{9-4 \sqrt{5}}{-1} \\ =-9-4 \sqrt{5} &=-9+4 \sqrt{5} \\ \therefore x^{2}-y^{2}=&(-9-4 \sqrt{5})^{2}-(-9+4 \sqrt{5})^{2} \\ &=81+72 \sqrt{5}+80-(81-72 \sqrt{5}+80) \\ &=81+72 \sqrt{5}+80-81+72 \sqrt{5}-80 \\ &-144 \sqrt{5} \end{aligned}

Connect with us on social media!
2022 © Quality Tutorials Pvt Ltd All rights reserved