Rationalize the denominator of:
\frac{1}{\sqrt{3}-\sqrt{2}+1}
\begin{aligned} &\frac{1}{\sqrt{3}-\sqrt{2}+1}\\ &=\frac{1}{(\sqrt{3}-\sqrt{2})+1} \times \frac{(\sqrt{3}-\sqrt{2})-1}{(\sqrt{3}-\sqrt{2})^{1}-1}\\ &=\frac{\sqrt{3}-\sqrt{2}-1}{(\sqrt{3}-\sqrt{2})^{2}-(1)^{2}}\\ &-\frac{\sqrt{3}-\sqrt{2}-1}{(\sqrt{5})^{2}-2 \sqrt{6}+(\sqrt{2})^{2}-1}\\ &=\frac{\sqrt{3}-\sqrt{2}-1}{3-2 \sqrt{6}+2-1}\\ &-\frac{\sqrt{3}-\sqrt{2}-1}{4-2 \sqrt{6}}\\ &-\frac{(\sqrt{3}-\sqrt{2})-1}{2(2-\sqrt{5})}\\ &=\frac{\sqrt{3}-\sqrt{2}-1}{2(2-\sqrt{6})} \times \frac{2+\sqrt{5}}{2+\sqrt{5}}\\ &=\frac{2 \sqrt{3}-2 \sqrt{2}-2+\sqrt{18}-\sqrt{12}-\sqrt{5}}{2\left[(2)^{2}-(\sqrt{6})^{2}\right]}\\ &=\frac{2 \sqrt{3}-2 \sqrt{2}-2+3 \sqrt{2}-2 \sqrt{3}-\sqrt{6}}{2(4-6)}\\ &=\frac{\sqrt{2}-2-\sqrt{6}}{2(-2)}\\ &=\frac{\sqrt{2}-2-\sqrt{6}}{-4}\\ &=\frac{1}{4}(2+\sqrt{6}-\sqrt{2}) \end{aligned}
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies