Q3) Find the product:
(i)
\left(a^2\right)\times\left(2a^{22}\right)\times\left(4a^{26}\right)
(ii) \left(\frac{2}{3}xy\right)\times\left(\frac{-9}{10}x^2y^2\right)
(iii) \left(\frac{-10}{3}pq^3\right)\times\left(\frac{6}{5}p^3q\right)
(iv) x\times x^2\times x^3\times x^4
Solution:
(i) \left(a^2\right)\times\left(2a^{22}\right)\times\left(4a^{26}\right)
= \left(2\times4\right)\left(a^2\times a^{22}\times a^{26}\right)
= 8\times a^{2+22+26}=8a^{50}
(ii) \left(\frac{2}{3}xy\right)\times\left(\frac{-9}{10}x^2y^2\right)
= \left(\frac{2}{3}\times\frac{-9}{10}\right)\left(x\times x^2\times y\times y^2\right)
= \frac{-3}{5}x^3y^3
(iii) \left(\frac{-10}{3}pq^3\right)\left(\frac{6}{5}p^3q\right)
= \left(\frac{-10}{3}\times\frac{6}{5}\right)\left(p\times p^3\times q^3\times q\right)
= -4p^4q^4
(iv) x\times x^2\times x^3\times x^4=x^{1+2+3+4}=x^{10}
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies