(z+5)^{2}=z^{2}+25
Solution:
\begin{aligned} &\mathrm{LHS}=(z+5)^{2}, \text { which is similar to }(\mathrm{a}-\mathrm{b})^{2} \text { identity, where }(\mathrm{a}+\mathrm{b})^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}+2 \mathrm{ab}\\ &(z+5)^{2}=z^{2}+5^{2}+2 \times 5 \times z=z^{2}+25+10 z \neq z^{2}+25=R H S\\ &\text { The correct statement is }(z+5)^{2}=z^{2}+25+10 z \end{aligned}
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies