Ncert solutions

Ncert solutions

Grade 7

Rational Numbers | Exercise 9.1

Question 10

Q10) Write the following rational numbers in ascending order:

(i) \frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}

(ii) \frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}

(iii) \frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}

Solution 10:

(i) \frac{-3}{5}<\frac{-2}{5}<\frac{-1}{5}

(ii) \frac{1}{3}\times\frac{3}{3}=\ \frac{3}{9}\ ,\ \ \frac{-2}{9}\ ,\ \ \frac{-4}{3}\times\frac{3}{3}\ =\ \frac{-12}{9}

\frac{-12}{9}\ <\ \frac{-2}{9}\ <\ \frac{3}{9}

\frac{-4}{3}<\ \frac{-2}{9}\ <\ \frac{1}{3}

(iii) \frac{-3}{2}<\frac{-3}{4}<\frac{-3}{7}

Still have questions? Our expert teachers can help you out

Book a free class now

Want to top your mathematics exam ?

Learn from an expert tutor.

Book a free class now
subject-cta

Question 10

Q10) Write the following rational numbers in ascending order:

(i) \frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}

(ii) \frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}

(iii) \frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}

Solution 10:

(i) \frac{-3}{5}<\frac{-2}{5}<\frac{-1}{5}

(ii) \frac{1}{3}\times\frac{3}{3}=\ \frac{3}{9}\ ,\ \ \frac{-2}{9}\ ,\ \ \frac{-4}{3}\times\frac{3}{3}\ =\ \frac{-12}{9}

\frac{-12}{9}\ <\ \frac{-2}{9}\ <\ \frac{3}{9}

\frac{-4}{3}<\ \frac{-2}{9}\ <\ \frac{1}{3}

(iii) \frac{-3}{2}<\frac{-3}{4}<\frac{-3}{7}

Still have questions? Our expert teachers can help you out

Book a free class now

Want to top your mathematics exam ?

Learn from an expert tutor.

Book a free class now
subject-cta
linkedin instgram facebook youtube
2020 © Quality Tutorials Pvt Ltd All rights reserved
linkedin instgram facebook youtube