Jump to

(a) Look at the following matchstick pattern of squares (Fig 11.6). The squares are not separate. Two neighbouring squares have a common matchstick. Observe the patterns and find the rule that gives the number of matchsticks

in terms of the number of squares. (Hint: If you remove vertical stick at the end, you will get a pattern of Cs)

(b) Fig 11.7 gives a matchstick pattern of triangles. As in Exercise 11 (a) above, find the general rule that gives the number of matchsticks in terms of the number of triangles.

Answer:

(a) We may observe that in the given matchstick pattern, the number of matchsticks are 4, 7, 10 and 13, which is 1 more than the thrice of the number of squares in the pattern

Therefore the pattern is 3x + 1, where x is the number of squares

(b) We may observe that in the given matchstick pattern, the number of matchsticks are 3, 5, 7 and 9 which is 1 more than the twice of the number of triangles in the pattern.

Therefore the pattern is 2x + 1, where x is the number of triangles.

Related Questions

Was This helpful?

Chapters

Lido

Courses

Quick Links

Terms & Policies

Terms & Policies

2022 © Quality Tutorials Pvt Ltd All rights reserved