\text { (i) } x(2 x+5)=25
(ii) (x + 3) (x – 3) = 40
\text { (i) } x(2 x+5)=25
Let us simplify the given equation,
\begin{aligned} &2 x^{2}+5 x-25=0\\ &\text { By factorizing, we get }\\ &2 x^{2}+10 x-5 x-25=0 \end{aligned}
2x(x + 5) – 5 (x + 5) = 0
(x + 5) (2x - 5) = 0
So,
(x + 5) = 0 or (2x - 5) = 0
x = -5 or 2x = 5
x = -5 or x = 5/2
∴ Value of x = -5, 5/2
(ii) (x + 3) (x – 3) = 40
Let us simplify the given equation,
\begin{aligned} &\begin{array}{l} x^{2}-3 x+3 x-9=40 \\ x^{2}-9-40=0 \\ x^{2}-49=0 \\ x^{2}=49 \\ x=\sqrt{49} \\ \quad=\pm 7 \end{array}\\ &\therefore \text { Value of } x=7,-7 \end{aligned}
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies