Jump to

- Rational and Irrational Numbers
- Compound Interest
- Expansions
- Factorization
- Simultaneous Linear Equations
- Problems on Simultaneous Linear Equations
- Quadratic Equations
- Indices
- Logarithms
- Triangles
- Mid Point Theorem
- Pythagoras Theorem
- Rectilinear Figures
- Theorems on Area
- Circle
- Mensuration
- Trigonometric Ratios
- Trigonometric Ratios and Standard Angles
- Coordinate Geometry
- Statistics

A boat takes 2 hours to go 40 km down the stream and it returns in 4 hours. Find the speed of

the boat in still water and the speed of the stream.

Answer:

Let’s assume the speed of the boat in still water be x km/hr

And the speed of the stream = y km/hr

So, the speed of the boat in downstream = (x + y) km/hr

The speed of the boat in upstream = (x - y) km/hr

We know,

Distance = Speed x time

Now, according to the given conditions in the problem, we have

40 = (x + y) × 2

x + y = 20 … (i)

And,

40 = (x - y) × 4

x – y = 10 … (ii)

Adding (i) and (ii), we have

x + y = 20

x – y = 10

2x = 30

x = 15

On substituting the value of x in equation (i), we have

15 + y = 20

y = 20 – 15

y = 5

Therefore, speed of the boat in still water = 15 km/hr and speed of the stream = 5 km/hr.

Related Questions

Was This helpful?

Chapters

Lido

Courses

Quick Links

Terms & Policies

Terms & Policies

2022 © Quality Tutorials Pvt Ltd All rights reserved