If O is an acute angle and tan = 8/15 then find sec + cosec
Given tan θ = 8/15
θ is an acute angle
in the figure triangle, OMP is a right-angled triangle,
\angle \mathrm{M}=90^{\circ} \text { and } \angle \mathrm{Q}=\theta
Tan θ = PM/OL = 8/15
Therefore, PM = 8, OM = 15
\begin{aligned} &\text { But } \mathrm{OP}^{2}=\mathrm{OM}^{2}+\mathrm{PM}^{2} \text { using Pythagoras theorem, }\\ &=15^{2}+8^{2}\\ &=225+64\\ &=289\\ &=17^{2} \end{aligned}
Therefore, OP = 17
Sec θ = OP/OM
= 17/15
Cosec θ = OP/PM
= 17/8
Now,
Sec θ + cosec θ = (17/15) + (17/8)
= (136 + 255)/ 120
= 391/120
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies