(a) In the figure (1) given below, ABCD is a parallelogram and P is any point in
BC. Prove that: Area of ∆ABP + area of ∆DPC = Area of ∆APD.
(b) In the figure (2) given below, O is any point inside a parallelogram ABCD. Prove
that:
(i) area of ∆OAB + area of ∆OCD = ½ area of || gm ABCD
(ii) area of ∆ OBC + area of ∆ OAD = ½ area of || gm ABCD
(a) Given:
From fig (1)
ABCD is a parallelogram and P is any point in BC.
To prove:
Area of ∆ABP + area of ∆DPC = Area of ∆APD
Proof:
∆APD and || gm ABCD are on the same base AD and between the same || lines AD and
BC,
ar (∆APD) = ½ ar (|| gm ABCD) …. (1)
In parallelogram ABCD
ar(|| gm ABCD) = ar (∆ ABP) + ar (∆APD) + ar (∆DPC)
Now, divide both sides by 2, we get
½ ar(|| gm ABCD) = ½ ar (∆ ABP) + ½ ar (∆APD) + ½ ar (∆DPC) …. (2)
From (1) and (2)
ar (∆APD) = ½ ar (|| gm ABCD)
Substituting (2) in (1)
ar (∆APD) = ½ ar (∆ ABP) + ½ ar (∆APD) + ½ ar (∆DPC)
ar (∆APD) - ½ ar (∆APD) = ½ ar (∆ ABP) + ½ ar (∆DPC)
½ ar (∆APD) = ½ [ar (∆ ABP) + ar (∆DPC)]
ar (∆APD) = ar (∆ ABP) + ar (∆DPC)
Or ar (∆ ABP) + ar (∆DPC) = ar (∆APD)
Hence proved.
(b) Given:
From fig (2)
|| gm ABCD in which O is any point inside it.
To prove:
(i) area of ∆OAB + area of ∆OCD = ½ area of || gm ABCD
(ii) area of ∆ OBC + area of ∆ OAD = ½ area of || gm ABCD
Draw POQ || AB through O. It meets AD at P and BC at Q.
Proof:
(i) AB || PQ and AP || BQ
ABQP is a || gm
Similarly, PQCD is a || gm
Now, ∆OAB and || gm ABQP are on same base AB and between same || lines AB and PQ
ar (∆OAB) = ½ ar (||gm ABQP) …. (1)
Similarly, ar (∆OCD) = ½ ar (||gm PQCD) …. (2)
Now by adding (1) and (2)
ar (∆OAB) + ar (∆OCD) = ½ ar (|| gm ABQP) + ½ ar (|| gm PQCD)
= ½ [ar (|| gm ABQP) + ar (|| gm PQCD)]
= ½ ar (|| gm ABCD)
ar (∆OAB) + ar (∆OCD) = ½ ar (|| gm ABCD)
Hence proved.
(ii) we know that,
ar (∆OAB) + ar (∆ OBC) + ar (∆OCD) + ar (∆OAD) = ar (|| gm ABCD)
[ar (∆OAB) + ar (∆OCD)] + [ar (∆ OBC) + ar (∆OAD)] = ar (|| gm ABCD)
½ ar (|| gm ABCD) + ar (∆OBC) + ar (∆OAD) = ar (|| gm ABCD)
ar (∆OBC) + ar (∆OAD) = ar (|| gm ABCD) - ½ ar (|| gm ABCD)
ar (∆OBC) + ar (∆OAD) = ½ ar (|| gm ABCD)
Hence proved.
Lido
Courses
Quick Links
Terms & Policies
Terms & Policies